214 research outputs found

    A new membrane protein Sbg1 links the contractile ring apparatus and septum synthesis machinery in fission yeast

    Get PDF
    Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast

    Identification of latexin by a proteomic analysis in rat normal articular cartilage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) is characterized by degeneration of articular cartilage. Animal models of OA induced are a widely used tool in the study of the pathogenesis of disease. Several proteomic techniques for selective extraction of proteins have provided protein profiles of chondrocytes and secretory patterns in normal and osteoarthritic cartilage, including the discovery of new and promising biomarkers. In this proteomic analysis to study several proteins from rat normal articular cartilage, two-dimensional electrophoresis and mass spectrometry (MS) were used. Interestingly, latexin (LXN) was found. Using an immunohistochemical technique, it was possible to determine its localization within the chondrocytes from normal and osteoarthritic articular cartilage.</p> <p>Results</p> <p>In this study, 147 proteins were visualized, and 47 proteins were identified by MS. A significant proportion of proteins are involved in metabolic processes and energy (32%), as well as participating in different biological functions including structural organization (19%), signal transduction and molecular signaling (11%), redox homeostasis (9%), transcription and protein synthesis (6%), and transport (6%). The identified proteins were assigned to one or more subcellular compartments.</p> <p>Among the identified proteins, we found some proteins already recognized in other studies such as OA-associated proteins. Interestingly, we identified LXN, an inhibitor of mammalian carboxypeptidases, which had not been described in articular cartilage. Immunolabeling assays for LXN showed a granular distribution pattern in the cytoplasm of most chondrocytes of the middle, deep and calcified zones of normal articular cartilage as well as in subchondral bone. In osteoarthritic cartilage, LXN was observed in superficial and deep zones.</p> <p>Conclusions</p> <p>This study provides the first proteomic analysis of normal articular cartilage of rat. We identified LXN, whose location was demonstrated by immunolabeling in the chondrocytes from the middle, deep and calcified zones of normal articular cartilage, and superficial and deep zones of osteoarthritic cartilage.</p

    First experiment: Fragmentation of ions relevant for space and therapy

    Get PDF
    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8mm) carbon target

    Induction of Cyclooxygenase-2 by Overexpression of the Human NADPH Oxidase 5 (NOX5) Gene in Aortic Endothelial Cells

    Get PDF
    Oxidative stress is a main molecular mechanism that underlies cardiovascular diseases. A close relationship between reactive oxygen species (ROS) derived from NADPH oxidase (NOX) activity and the prostaglandin (PG) biosynthesis pathway has been described. However, little information is available about the interaction between NOX5 homolog-derived ROS and the PG pathway in the cardiovascular context. Our main goal was to characterize NOX5-derived ROS effects in PG homeostasis and their potential relevance in cardiovascular pathologies. For that purpose, two experimental systems were employed: an adenoviral NOX5-β overexpression model in immortalized human aortic endothelial cells (TeloHAEC) and a chronic infarction in vivo model developed from a conditional endothelial NOX5 knock-in mouse. NOX5 increased cyclooxygenase-2 isoform (COX-2) expression and prostaglandin E2 (PGE2) production through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in TeloHAEC. Protein kinase C (PKC) activation and intracellular calcium level (Ca++) mobilization increased ROS production and NOX5 overexpression, which promoted a COX-2/PGE2 response in vitro. In the chronic infarction model, mice encoding endothelial NOX5 enhanced the cardiac mRNA expression of COX-2 and PGES, suggesting a COX-2/PGE2 response to NOX5 presence in an ischemic situation. Our data support that NOX5-derived ROS may modulate the COX-2/PGE2 axis in endothelial cells, which might play a relevant role in the pathophysiology of heart infarction

    Palynological and chemical volatile components of tipically autumnal honeys of the western Mediterranean

    Full text link
    [EN] Twenty-five samples of autumnal honeys from the western Mediterranean (Mallorca and Eivissa, Balearic Islands) were examined for pollen content (qualitative and quantitative melissopalynological analysis), moisture, electrical conductivity, colour, sensorial qualities and volatile components. Quantitative analysis showed that the honey contained Maurizio's Class II: 64%, Class III: 28%, Class IV: 4% and Class V: 4%. Fifty-four pollen types, with an average number of 16.68 per sample, were identified, belonging to 29 botanical families. Only two taxa (Ceratonia siliqua and Erica multiflora) were found in all samples. Seventeen samples were unifloral (68%) - ten (40%) of C. siliqua, six (24%) of E. multiflora and one (4%) of Hedera helix. All honeys have a low honeydew index (<?0.09%), while the values for electrical conductivity and water content were high. The major honey volatile components are: cis- and trans-linalool oxides (64.2%) and hotrienol (10.4%) for the carob (C. siliqua) and trans-linalool oxide (13.4%), p-menthane-1,8-diol (11.1%), safranal (9.7%), limonene (5,4%), -pinene (3.7%) and oxoisophorone (3.4%) for the winter heather (E. multiflora).The authors would like to extend their gratitude to the Mallorca Rural 'Leader plus' programme and the beekeepers of Mallorca and Eivissa for their support and friendly collaboration. The authors also thank an anonymous reviewer for useful comments and suggestions on an earlier version of the manuscript.Boi, M.; Llorens Molina, JA.; Cortés, L.; Lladó, G.; Llorens, L. (2013). Palynological and chemical volatile components of tipically autumnal honeys of the western Mediterranean. Grana. 52(2):93-105. doi:10.1080/00173134.2012.744774S93105522Andrade, P. B., Amaral, M. T., Isabel, P., Carvalho, J. C. M. F., Seabra, R. M., & Proença da Cunha, A. (1999). Physicochemical attributes and pollen spectrum of Portuguese heather honeys. Food Chemistry, 66(4), 503-510. doi:10.1016/s0308-8146(99)00100-4Anklam, E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 63(4), 549-562. doi:10.1016/s0308-8146(98)00057-0Bosch, J., Del Pino, F. G., Ramoneda, J., & Retana, J. (1996). FRUITING PHENOLOGY AND FRUIT SET OF CAROB, CERATONIA SILIQUA L. (CESALPINACEAE). Israel Journal of Plant Sciences, 44(4), 359-368. doi:10.1080/07929978.1996.10676657Bouseta, A., Collin, S., & Dufour, J.-P. (1992). Characteristic aroma profiles of unifloral honeys obtained with a dynamic headspace GC-MS system. Journal of Apicultural Research, 31(2), 96-109. doi:10.1080/00218839.1992.11101268Cajka, T., Hajslova, J., Pudil, F., & Riddellova, K. (2009). Traceability of honey origin based on volatiles pattern processing by artificial neural networks. Journal of Chromatography A, 1216(9), 1458-1462. doi:10.1016/j.chroma.2008.12.066Castro-Vázquez, L., Díaz-Maroto, M. C., González-Viñas, M. A., & Pérez-Coello, M. S. (2009). Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chemistry, 112(4), 1022-1030. doi:10.1016/j.foodchem.2008.06.036Conti, M. E., Stripeikis, J., Campanella, L., Cucina, D., & Tudino, M. B. (2007). Characterization of Italian honeys (Marche Region) on the basis of their mineral content and some typical quality parameters. Chemistry Central Journal, 1(1). doi:10.1186/1752-153x-1-14Custódio, L., Serra, H., Nogueira, J. M. F., Gonçalves, S., & Romano, A. (2006). Analysis of the Volatiles Emitted by Whole Flowers and Isolated Flower Organs of the Carob Tree Using HS-SPME-GC/MS. Journal of Chemical Ecology, 32(5), 929-942. doi:10.1007/s10886-006-9044-9Cuevas-Glory, L., Ortiz-Vázquez, E., Pino, J. A., & Sauri-Duch, E. (2012). Floral classification of Yucatan Peninsula honeys by PCA & HS-SPME/GC-MS of volatile compounds. International Journal of Food Science & Technology, 47(7), 1378-1383. doi:10.1111/j.1365-2621.2012.02983.xDe Bolòs, O., & Molinier, R. (1984). Vegetation of the Pityusic Islands. Biogeography and Ecology of the Pityusic Islands, 185-221. doi:10.1007/978-94-009-6539-3_9De Maria, C. A. B., & Moreira, R. F. A. (2003). Compostos voláteis em méis florais. Química Nova, 26(1), 90-96. doi:10.1590/s0100-40422003000100016Guyot, C., Scheirman, V., & Collin, S. (1999). Floral origin markers of heather honeys: Calluna vulgaris and Erica arborea. Food Chemistry, 64(1), 3-11. doi:10.1016/s0308-8146(98)00122-8Herrera, J. (1988). Pollination Relationships in Southern Spanish Mediterranean Shrublands. The Journal of Ecology, 76(1), 274. doi:10.2307/2260469Jerković, I., & Marijanović, Z. (2010). Volatile Composition Screening of Salix spp. Nectar Honey: Benzenecarboxylic Acids, Norisoprenoids, Terpenes, and Others. Chemistry & Biodiversity, 7(9), 2309-2325. doi:10.1002/cbdv.201000021Jones, G. D., & Bryant, Jr, V. M. (2004). The use of ETOH for the dilution of honey. Grana, 43(3), 174-182. doi:10.1080/00173130410019497Kummerow, J. (1983). Comparative Phenology of Mediterranean-Type Plant Communities. Ecological Studies, 300-317. doi:10.1007/978-3-642-68935-2_17La‐Serna Ramos, I. E., & GÓmez Ferreras, C. (2006). Pollen and sensorial characterization of different honeys from El Hierro (Canary Islands). Grana, 45(2), 146-159. doi:10.1080/00173130600578658Del Carmen Llasat, M., Ramis, C., & Barrantes, J. (1996). The meteorology of high‐intensity rainfall events over the west Mediterranean region. Remote Sensing Reviews, 14(1-3), 51-90. doi:10.1080/02757259609532313Louveaux, J., Maurizio, A., & Vorwohl, G. (1978). Methods of Melissopalynology. Bee World, 59(4), 139-157. doi:10.1080/0005772x.1978.11097714Martins, R. C., Lopes, V. V., Valentão, P., Carvalho, J. C. M. F., Isabel, P., Amaral, M. T., … Silva, B. M. (2008). Relevant principal component analysis applied to the characterisation of Portuguese heather honey. Natural Product Research, 22(17), 1560-1582. doi:10.1080/14786410701825004Melliou, E., & Chinou, I. (2011). Chemical constituents of selected unifloral Greek bee-honeys with antimicrobial activity. Food Chemistry, 129(2), 284-290. doi:10.1016/j.foodchem.2011.04.047Pendleton, M. (2006). Descriptions of melissopalynological methods involving centrifugation should include data for calculating Relative Centrifugal Force (RCF) or should express data in units of RCF or gravities (g). Grana, 45(1), 71-72. doi:10.1080/00173130500520479Pérez, R. A., Sánchez-Brunete, C., Calvo, R. M., & Tadeo, J. L. (2002). Analysis of Volatiles from Spanish Honeys by Solid-Phase Microextraction and Gas Chromatography−Mass Spectrometry. Journal of Agricultural and Food Chemistry, 50(9), 2633-2637. doi:10.1021/jf011551rPersano Oddo, L., Piana, L., Bogdanov, S., Bentabol, A., Gotsiou, P., Kerkvliet, J., … von der Ohe, K. (2004). Botanical species giving unifloral honey in Europe. Apidologie, 35(Suppl. 1), S82-S93. doi:10.1051/apido:2004045Persano Oddo, L., & Piro, R. (2004). Main European unifloral honeys: descriptive sheets. Apidologie, 35(Suppl. 1), S38-S81. doi:10.1051/apido:2004049Piana, M. L., Persano Oddo, L., Bentabol, A., Bruneau, E., Bogdanov, S., & Guyot Declerck, C. (2004). Sensory analysis applied to honey: state of the art. Apidologie, 35(Suppl. 1), S26-S37. doi:10.1051/apido:2004048Piasenzotto, L., Gracco, L., & Conte, L. (2003). Solid phase microextraction (SPME) applied to honey quality control. Journal of the Science of Food and Agriculture, 83(10), 1037-1044. doi:10.1002/jsfa.1502Radovic, B. S., Careri, M., Mangia, A., Musci, M., Gerboles, M., & Anklam, E. (2001). Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chemistry, 72(4), 511-520. doi:10.1016/s0308-8146(00)00263-6RAMÓN-LACA, L., & MABBERLEY, D. J. (2004). The ecological status of the carob-tree (Ceratonia siliqua, Leguminosae) in the Mediterranean. Botanical Journal of the Linnean Society, 144(4), 431-436. doi:10.1111/j.1095-8339.2003.00254.xRetana, J., Ramoneda, J., Garcia Del Pino, F., & Bosch, J. (1994). Flowering phenology of carob,Ceratonia siliquaL. (Cesalpinaceae). Journal of Horticultural Science, 69(1), 97-103. doi:10.1080/14620316.1994.11515254Ricciardelli d’Albore, G. & Vorwohl, G. (1979). Mieles monoflorales en el Mediterráneo documentado con ayuda del análisis microscópico de mieles. Actas de XXVII Congreso Internacional de Apicultura, Athens, Greece, 14–20 September 1979, 201–208.Pilar de Sá‐Otero, M., Armesto‐Baztan, S., & DÍaz‐Losada, E. (2006). A study of variation in the pollen spectra of honeys sampled from the Baixa Limia‐Serra do Xurés Nature Reserve in north‐west Spain. Grana, 45(2), 137-145. doi:10.1080/00173130600708537Seijo, M. C., Jato, M. V., Aira, M. J., & Iglesias, I. (1997). Unifloral honeys of Galicia (north-west Spain). Journal of Apicultural Research, 36(3-4), 133-140. doi:10.1080/00218839.1997.11100939Terrab, A., Diez, M. J., & Heredia, F. J. (2003). Palynological, physico-chemical and colour characterization of Moroccan honeys: III. Other unifloral honey types. International Journal of Food Science and Technology, 38(4), 395-402. doi:10.1046/j.1365-2621.2003.00713.xTERRAB, A., PONTES, A., HEREDIA, F. J., & DÍEZ, M. J. (2004). A preliminary palynological characterization of Spanish thyme honeys. Botanical Journal of the Linnean Society, 146(3), 323-330. doi:10.1111/j.1095-8339.2004.00335.xTerrab, A., Valdés, B., & Josefa Díez, M. (2003). Pollen analysis of honeys from the Mamora forest region (NW Morocco). Grana, 42(1), 47-54. doi:10.1080/00173130310008580Thompson, J. D. (2005). Plant Evolution in the Mediterranean. doi:10.1093/acprof:oso/9780198515340.001.0001Von Der Ohe, W., Persano Oddo, L., Piana, M. L., Morlot, M., & Martin, P. (2004). Harmonized methods of melissopalynology. Apidologie, 35(Suppl. 1), S18-S25. doi:10.1051/apido:2004050VORWOHL, G. (1964). DIE BEZIEHUNGEN ZWISCHEN DER ELEKTRISCHEN LEITFÄHIGKEIT DER HONIGE UND IHRER TRACHTMÄSSIGEN HERKUNFT. Annales de l’Abeille, 7(4), 301-309. doi:10.1051/apido:19640403Vorwohl, G. (1967). The microscopic analysis of honey, a comparison of its methods with those of the other branches of palynology. Review of Palaeobotany and Palynology, 3(1-4), 287-290. doi:10.1016/0034-6667(67)90061-

    Cross-Sectional Analysis of Late HAART Initiation in Latin America and the Caribbean: Late Testers and Late Presenters

    Get PDF
    Background: Starting HAART in a very advanced stage of disease is assumed to be the most prevalent form of initiation in HIV-infected subjects in developing countries. Data from Latin America and the Caribbean is still lacking. Our main objective was to determine the frequency, risk factors and trends in time for being late HAART initiator (LHI) in this region. Methodology: Cross-sectional analysis from 9817 HIV-infected treatment-naive patients initiating HAART at 6 sites (Argentina, Chile, Haiti, Honduras, Peru and Mexico) from October 1999 to July 2010. LHI had CD4+^+ count \leq200cells/mm3^3 prior to HAART. Late testers (LT) were those LHI who initiated HAART within 6 months of HIV diagnosis. Late presenters (LP) initiated after 6 months of diagnosis. Prevalence, risk factors and trends over time were analyzed. Principal Findings: Among subjects starting HAART (n = 9817) who had baseline CD4+^+ available (n = 8515), 76% were LHI: Argentina (56%[95%CI:52–59]), Chile (80%[95%CI:77–82]), Haiti (76%[95%CI:74–77]), Honduras (91%[95%CI:87–94]), Mexico (79%[95%CI:75–83]), Peru (86%[95%CI:84–88]). The proportion of LHI statistically changed over time (except in Honduras) (p0.02p\leq0.02; Honduras p = 0.7), with a tendency towards lower rates in recent years. Males had increased risk of LHI in Chile, Haiti, Peru, and in the combined site analyses (CSA). Older patients were more likely LHI in Argentina and Peru (OR 1.21 per +10-year of age, 95%CI:1.02–1.45; OR 1.20, 95%CI:1.02–1.43; respectively), but not in CSA (OR 1.07, 95%CI:0.94–1.21). Higher education was associated with decreased risk for LHI in Chile (OR 0.92 per +1-year of education, 95%CI:0.87–0.98) (similar trends in Mexico, Peru, and CSA). LHI with date of HIV-diagnosis available, 55% were LT and 45% LP. Conclusion: LHI was highly prevalent in CCASAnet sites, mostly due to LT; the main risk factors associated were being male and older age. Earlier HIV-diagnosis and earlier treatment initiation are needed to maximize benefits from HAART in the region

    New insights into the neolithisation process in southwest Europe according to spatial density analysis from calibrated radiocarbon dates

    Get PDF
    The agricultural way of life spreads throughout Europe via two main routes: the Danube corridor and the Mediterranean basin. Current archaeological literature describes the arrival to the Western Mediterranean as a rapid process which involves both demic and cultural models, and in this regard, the dispersal movement has been investigated using mathematical models, where the key factors are time and space. In this work, we have created a compilation of all available radiocarbon dates for the whole of Iberia, in order to draw a chronological series of maps to illustrate temporal and spatial patterns in the neolithisation process. The maps were prepared by calculating the calibrated 14C date probability density curves, as a proxy to show the spatial dynamics of the last hunter-gatherers and first farmers. Several scholars have pointed out problems linked with the variability of samples, such as the overrepresentation of some sites, the degree of regional research, the nature of the dated samples and above all the archaeological context, but we are confident that the selected dates, after applying some filters and statistical protocols, constitute a good way to approach settlement spatial patterns in Iberia at the time of the neolithisation process
    corecore